Computation of periodic solutions of Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS
In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.
متن کاملPeriodic Solutions of Second Order Hamiltonian Systems
We provide sufficient conditions for the existence of periodic solutions of the second order Hamiltonian system −x′′ − λx = εV ′ x (t, x) , where ε is a small parameter, x ∈ R and V (t, x) is 2π-periodic in t. Moreover we provide two applications.
متن کاملPeriodic solutions of even Hamiltonian systems onthe
We consider the Hamiltonian system (HS) ?J _ z = H z (t; z) where H 2 C 2 (R R 2N ; R) is 2-periodic in all variables, so (HS) induces a Hamiltonian system on the torus T 2N. In addition we assume that H is even in the z-variable. This implies the existence of 2 2N trivial stationary solutions of (HS). We are interested in the existence of nontrivial periodic solutions. Observe that the Arnol'd...
متن کاملTheoretical Computation of Lyapunov Exponents for Almost Periodic Hamiltonian Systems
Lyapunov exponents are an important concept to describe qualitative properties of dynamical systems. For instance, chaotic systems can be caracterized with the positivity of the largest Lyapunov exponent. In this paper, we use the Iwasawa decomposition of the semisimple Lie group Sp(n,R) and the enlargement of the phase space to give a theoretical computation of Lyapunov exponents of almost per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1996
ISSN: 0893-9659
DOI: 10.1016/0893-9659(96)00086-9